Spontaneous Activity of Cochlear Hair Cells Triggered by Fluid Secretion Mechanism in Adjacent Support Cells

نویسندگان

  • Han Chin Wang
  • Chun-Chieh Lin
  • Rocky Cheung
  • YingXin Zhang-Hooks
  • Amit Agarwal
  • Graham Ellis-Davies
  • Jason Rock
  • Dwight E. Bergles
چکیده

Spontaneous electrical activity of neurons in developing sensory systems promotes their maturation and proper connectivity. In the auditory system, spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from glia-like inner supporting cells (ISCs), facilitating maturation of central pathways before hearing onset. Here, we find that ATP stimulates purinergic autoreceptors in ISCs, triggering Cl(-) efflux and osmotic cell shrinkage by opening TMEM16A Ca(2+)-activated Cl(-) channels. Release of Cl(-) from ISCs also forces K(+) efflux, causing transient depolarization of IHCs near ATP release sites. Genetic deletion of TMEM16A markedly reduces the spontaneous activity of IHCs and spiral ganglion neurons in the developing cochlea and prevents ATP-dependent shrinkage of supporting cells. These results indicate that supporting cells in the developing cochlea have adapted a pathway used for fluid secretion in other organs to induce periodic excitation of hair cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Therapeutic potential of cell therapy in the repair of hair cells and spiral ganglion neurons: review article

The mammalian cochlea is a highly complex structure which contains several cells, including sensory receptor or hair cells. The main function of the cochlear hair cells is to convert the mechanical vibrations of the sound into electrical signals, then these signals travel to the brain along the auditory nerve. Auditory hair cells in some amphibians, reptiles, fish, and birds can regenerate or r...

متن کامل

Driving the Early Auditory Network the Old-Fashioned Way

Spontaneous neuronal activity during the development of the auditory sensory system is important in establishing mature connectivity. Wang et al. show that glia-like cells drive spontaneous spiking in neighboring cochlear inner hair cells via a process that involves osmotic cell shrinkage and the secretion of potassium ions.

متن کامل

Helmholtz ’ s piano strings : reverberation of ripples on the tectorial membrane

In 1857 Helmholtz proposed that the ear contained an array of sympathetic resonators, like piano strings, which served to give the ear its fine frequency discrimination. Since the discovery that most healthy human ears emit faint, pure tones (spontaneous otoacoustic emissions), it has been possible to view these narrowband signals as the continuous ringing of the resonant elements. But what are...

متن کامل

Kölliker's Organ and the Development of Spontaneous Activity in the Auditory System: Implications for Hearing Dysfunction

Prior to the "onset of hearing," developing cochlear inner hair cells (IHCs) and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker's organ...

متن کامل

Spontaneous Mesenchymal to Epithelial Like Tissue Transition (MET) in a Long Term Human Skin Culture

In an attempt to isolate multipotent stem cells from foreskin in a long-term culture, we encountered an interesting phenomenon which was the conversion of the fibroblast dominant condition to epithelial-like tissue formation. However, the basic mechanism(s) which may be involved in this conversion is not clear. This study was designed to evaluate the cells protein secretion activity and examine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 163  شماره 

صفحات  -

تاریخ انتشار 2015